Select Page

China supplier CZPT OEM Herringbone Gear Shaft, Heclical Gear Shaft, Bearing Shaft hypoid bevel gear

Product Description

1.P roduct Description

Forging—Normalizing&Tempering—Rough machining—Hardening Tempering—Semi-finishing machining—Drilling deep hole—Hobbing—Tooth Surface Quenching—Grinding Shaft diameter—Gear grinding—Inspection—Package—Delivery
 

Helical Gear shaft, Herringbone Gear Shaft, Bevel Gear, Eccentric Shaft mainly used on vessel engine, fan internal gear etc.
1.1. Processing Grinded CHINAMFG Pinion Shaft, CHINAMFG Gear Set
Gear Shaft drawing CHECK, Make Forging Mold, Forging Mold Quality Inspection Check, Machine Processing, Check Size\Hardness\Surface Finish and other technical parameters on drawing. 
1.2. Herringbone Gear Shaft Package
Spray anti-rust oil on Herringbone Gear Shaft, Wrap waterproof cloth around Gear Shaft for reducer, Prepare package by shaft shape&weight to choose steel frame, steel support or wooden box etc.
1.3. OEM Customized Grinded double helical gear shaft
We supply OEM SERVICE, customized herringbone gear shaft with big module, more than 1tons big weight, more than 3m length, 42CrMo/35CrMo or your specified required material double helical gear shaft. 

2.Product Technical info.

Module m Range: 5~70
Gear Teeth Number z OEM by drawing’s technical parameters
Teeth Height H OEM by drawing’s technical parameters
Teeth Thickness S OEM by drawing’s technical parameters
Tooth pitch P OEM by drawing’s technical parameters
Tooth addendum Ha OEM by drawing’s technical parameters
Tooth dedendum Hf OEM by drawing’s technical parameters
Working height h’ OEM by drawing’s technical parameters
Bottom clearance C OEM by drawing’s technical parameters
Pressure Angle α OEM by drawing’s technical parameters
Helix Angle,    OEM by drawing’s technical parameters
Surface hardness HRC Range: HRC 50~HRC63(Quenching)
Hardness: HB Range: HB150~HB280; Hardening Tempering/ Hardened Tooth Surface 
Surface finish   Range: Ra1.6~Ra3.2
Tooth surface roughness Ra Range: ≥0.4
Gear Accuracy Grade   Grade Range: 5-6-7-8-9 (ISO 1328)
Length L Range: 0.8m~10m
Weight Kg Range: Min. 100kg~Max. 80tons Single Piece
Gear Position   Internal/External Gear
Toothed Portion Shape   Spur Gear/Bevel/Spiral/Helical/Straight
Shaft shape   Herringbone Gear Shaft / Gear Shaft / Eccentric Shaft / Spur Gear / Girth Gear / Gear Wheel
Material Forging/
Casting
Forging/ Casting 45/42CrMo/40Cr or OEM
Manufacturing Method   Cut Gear
Gear Teeth Milling  
Gear Teeth Grinding  
Heat Treatment   Quenching /Carburizing
Sand Blasting   Null
Testing   UT\MT
Trademark   TOTEM/OEM
Application   Gearbox, Reducer,
Petroleum,Cement,Mining,Metallurgy etc.
Wind driven generator,vertical mill reducer,oil rig helical gear,petroleum slurry pump gear shaft
Transport Package   Export package (wooden box, steel frame etc.)
Origin   China
HS Code   8483409000

Material Comparison List

 STEEL CODE GRADES COMPARISON
CHINA/GB ISO ГΟСТ ASTM JIS DIN
45 C45E4 45 1045 S45C CK45
40Cr 41Cr4 40X 5140 SCr440 41Cr4
20CrMo 18CrMo4 20ХМ 4118 SCM22 25CrMo4
42CrMo 42CrMo4 38XM 4140 SCM440 42CrMo4
20CrMnTi   18XГT   SMK22  
20Cr2Ni4   20X2H4A      
20CrNiMo 20CrNiMo2 20XHM 8720 SNCM220 21NiCrMo2
40CrNiMoA   40XH2MA/
40XHMA
4340 SNCM439 40NiCrMo6/
36NiCrMo4
20CrNi2Mo 20NiCrMo7 20XH2MA 4320 SNCM420  

3.Totem Service

TOTEM Machinery focus on supplying GEAR SHAFT, ECCENTRIC SHAFT, HERRINGBONE GEAR, BEVEL GEAR, INTERNAL GEAR and other parts for transmission devices & equipments(large industrial reducers & drivers). Which were mainly used in the fields of port facilities, cement, mining, metallurgical industry etc. We invested in several machine processing factories,forging factories and casting factories,relies on these strong reliable and high-quality supplier network, to let our customers worry free.  

TOTEM Philosophy: Quality-No.1, Integrity- No.1, Service- No.1 

24hrs Salesman on-line, guarantee quick and positive feedback. Experienced and Professional Forwarder Guarantee Log. transportation.

4.About TOTEM

1. Workshop & Processing Strength

2. Testing Facilities

3. Customer Inspection & Shipping

5. Contact Us

ZheJiang CHINAMFG Machinery Co.,Ltd
 
Facebook: ZheJiang Totem

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Forging
Journal Diameter Dimensional Accuracy: It5-It9
Axis Shape: Straight Shaft
Shaft Shape: Customized
Customization:
Available

|

Customized Request

gear shaft

Can you explain the impact of gear shaft misalignment on gear performance?

Gear shaft misalignment can have a significant impact on the performance of gears within a system. When gear shafts are not properly aligned, several issues can arise, affecting the overall functionality and reliability of the gears. Let’s explore the impact of gear shaft misalignment in detail:

  • Reduced Efficiency:

Misalignment causes a loss of efficiency in gear systems. When gear shafts are misaligned, the teeth of the gears do not mesh correctly, leading to increased friction and energy losses. This results in reduced power transmission efficiency, as a portion of the input power is dissipated as heat instead of being effectively transferred through the gears.

  • Increased Wear and Fatigue:

Misalignment can lead to uneven contact and loading between gear teeth. This uneven distribution of forces causes localized high-stress areas on the gear teeth, leading to accelerated wear and fatigue. The concentrated stress on specific areas of the teeth can result in pitting, wear, and even tooth breakage over time. Increased wear and fatigue significantly reduce the lifespan of gears and can lead to unexpected failures.

  • Noise and Vibration:

Gear shaft misalignment often results in increased noise and vibration levels within the gear system. As the misaligned teeth engage, they generate excessive noise due to impact and increased friction. The vibrations caused by the misalignment can propagate through the gear assembly and the surrounding components, causing additional noise and potentially affecting the performance and lifespan of the entire system.

  • Loss of Tooth Contact:

Misalignment can cause a loss of proper tooth contact between the gears. Insufficient tooth contact reduces the load-carrying capacity of the gears and compromises the transmission of torque. The reduced contact area also increases the likelihood of localized stress concentrations, leading to premature wear and failure.

  • Overloading and Unbalanced Loads:

Gear shaft misalignment can result in overloading and unbalanced loads on the gears. Misalignment can cause uneven distribution of forces, with some teeth bearing a higher load than others. This can lead to excessive stress on specific gear teeth, potentially exceeding their load-carrying capacity. Over time, the overloading of certain teeth can result in accelerated wear, tooth breakage, and even catastrophic gear failure.

  • Seal and Bearing Issues:

Misalignment can also affect the performance of seals and bearings within the gear system. Misaligned gear shafts can create additional radial or axial loads on the bearings, reducing their lifespan and causing premature failure. Seal integrity can also be compromised, leading to leaks and contamination of the gear system, further exacerbating the issues associated with misalignment.

In summary, gear shaft misalignment has a detrimental impact on gear performance. It reduces efficiency, increases wear and fatigue, generates noise and vibration, causes loss of tooth contact, leads to overloading and unbalanced loads, and affects the performance of seals and bearings. Proper alignment of gear shafts is crucial to ensure optimal gear performance, longevity, and reliable power transmission within the gear system.

gear shaft

What are the advantages of using a gear shaft in various gear arrangements?

A gear shaft offers several advantages when used in various gear arrangements within mechanical systems. It plays a critical role in transmitting motion and power efficiently. Here are the advantages of using a gear shaft:

  • Mechanical Power Transmission:

A gear shaft enables the transmission of mechanical power between gears in a gear arrangement. By connecting and meshing with multiple gears, the gear shaft efficiently transfers rotational motion and torque from the driving gear to the driven gear. This power transmission capability allows for the amplification, reduction, or redirection of power as required by the mechanical system, enabling the efficient operation of machinery and equipment.

  • Speed and Torque Conversion:

With the use of different gear arrangements on a gear shaft, it becomes possible to convert speed and torque. By employing gears with different numbers of teeth or gear ratios, the rotational speed and torque output can be adjusted. Gear arrangements like spur gears, helical gears, bevel gears, and planetary gears on the gear shaft allow for precise speed and torque conversion, enabling the adaptation of mechanical systems to specific requirements.

  • Mechanical Advantage:

A gear shaft offers the advantage of mechanical advantage. By incorporating gears with different sizes or gear ratios, the gear shaft can provide mechanical advantage in terms of torque amplification or speed reduction. This allows for the efficient utilization of available power and the optimization of mechanical system performance. Mechanical advantage is particularly beneficial in applications where high torque or precise speed control is required.

  • Versatility and Flexibility:

The use of a gear shaft provides versatility and flexibility in gear arrangements. Different types of gears can be mounted on the gear shaft, allowing for the creation of complex gear systems. Gear arrangements can be customized based on the specific requirements of the mechanical system, such as space constraints, torque demands, and speed ranges. The gear shaft’s versatility enables the implementation of various gear combinations, making it adaptable to a wide range of applications.

  • Smooth and Reliable Operation:

When properly designed and manufactured, a gear shaft ensures smooth and reliable operation of the gear arrangement. The gear teeth on the gears mesh with precision, guided by the gear shaft, resulting in minimal noise, vibration, and backlash. The gear shaft’s stable and accurate rotation facilitates the synchronized movement of gears, promoting efficient power transmission and reducing wear on the gear teeth. This contributes to the overall longevity and reliability of the mechanical system.

  • Durability and Load Capacity:

A gear shaft, constructed from durable materials and designed to handle high loads, offers excellent durability and load-carrying capacity. The gear shaft’s robust construction allows it to withstand the forces and stresses encountered during power transmission. It ensures the gear arrangement can handle the required torque, resist deformation, and maintain its integrity under demanding operating conditions.

In summary, the advantages of using a gear shaft in various gear arrangements include mechanical power transmission, speed and torque conversion, mechanical advantage, versatility and flexibility, smooth and reliable operation, durability, and load-carrying capacity. Gear shafts are essential components that enhance the performance, efficiency, and reliability of mechanical systems.

gear shaft

How does a gear shaft contribute to torque transmission and rotation?

A gear shaft plays a significant role in torque transmission and rotational motion within mechanical systems. It serves as the intermediary component that enables the transfer of torque between gears, allowing for the generation of rotational force and motion. Here’s a detailed explanation of how a gear shaft contributes to torque transmission and rotation:

  • Torque Transmission:

A gear shaft facilitates torque transmission by connecting and engaging gears within a mechanical system. Torque is the rotational force that causes an object to rotate. When torque is applied to the gear shaft, it transfers this rotational force to the connected gears. The gears mesh with each other, and the teeth on the gears transmit the torque from the driving gear to the driven gear through the gear shaft. This torque transmission allows the rotational force to be transferred and amplified or reduced as required, enabling the machinery to generate the necessary force to perform tasks.

  • Rotational Motion Transfer:

In addition to torque transmission, a gear shaft contributes to the transfer of rotational motion between gears. When one gear rotates, it meshes with another gear connected to the gear shaft. The teeth on the gears engage with each other, creating a mechanical linkage. As the driving gear rotates, it imparts its rotational motion to the gear shaft, which, in turn, transfers this motion to the driven gear. The rotational motion is transmitted through the gear shaft, allowing for the synchronized movement of various components within the mechanical system.

  • Mechanical Advantage:

One of the key contributions of a gear shaft to torque transmission is the ability to provide mechanical advantage. Mechanical advantage refers to the amplification or reduction of force and torque through the use of different gear sizes or gear ratios. By connecting gears with varying numbers of teeth on the gear shaft, the gear ratio can be adjusted. Gears with more teeth provide a higher gear ratio, resulting in increased torque output but reduced rotational speed. Conversely, gears with fewer teeth offer a lower gear ratio, resulting in reduced torque output but increased rotational speed. The gear shaft enables the selection of the appropriate gear ratio to match the desired torque and speed requirements of the mechanical system.

  • Torque Distribution:

A gear shaft also contributes to the distribution of torque within a mechanical system. As torque is transmitted through the gear shaft, it ensures that the force is evenly distributed across the teeth of the connected gears. This torque distribution minimizes stress concentration on individual gear teeth, promoting smooth operation and preventing premature wear or failure. The gear shaft acts as a conduit, allowing torque to flow efficiently and uniformly, ensuring reliable torque transmission and rotation.

In summary, a gear shaft plays a crucial role in torque transmission and rotation within mechanical systems. It enables the transfer of torque between gears, facilitates the transfer of rotational motion, provides mechanical advantage for torque amplification or reduction, and ensures uniform torque distribution. Gear shafts are essential components that contribute to the efficient and effective operation of machinery and mechanical systems.

China supplier CZPT OEM Herringbone Gear Shaft, Heclical Gear Shaft, Bearing Shaft hypoid bevel gearChina supplier CZPT OEM Herringbone Gear Shaft, Heclical Gear Shaft, Bearing Shaft hypoid bevel gear
editor by CX 2023-12-25

gear shaft

As one of leading gear shaft manufacturers, suppliers and exporters of products, We offer gear shaft and many other products.

Please contact us for details.

Mail:gearshaft.net

Manufacturer supplier exporter of gear shaft

Recent Posts